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1. Introduction

Structural vibration limits the performance of turbomachinery in various applications (e.g.,
power generation equipment and rocket engine turbopumps). Vibration of structure can be
divided into forced and self-excited vibrations, depending on the energy source. In the latter kind,
the vibratory motion itself extracts energy from sources (e.g., wind, steam, etc.), leading to
instability. Inability to predict these instabilities during the design stage leads to costly delays and
shutdowns after installation.
Many sources of self-excited vibrations in rotor systems (e.g., asymmetric bearing stiffness and

non-axisymmetric clearance in labyrinth seals) have been identified and extensively analyzed by
investigators such as Childs [1], Benckert and Wachter [2], and Millsaps [3]. However, the
rotordynamic forces due to non-axisymmetric clearance in turbines and compressors have
received relatively little attention. Recently, elementary models for aerodynamic forces which
arise in turbines with non-axisymmetric rotor tip clearance (i.e., Alford force) have been
developed by Song and Martinez-Sanchez [4,5].
Furthermore, it is as important to investigate the effects of such forces on the structural

response of a rotor system. Therefore, fluid–structure interaction analyses (e.g., aeroelasticity
of aircraft structures [6]) are needed. However, such effort with regard to rotordynamic in-
stability has been scarce. Therefore, in this paper, a structural model of a rotor system has been
developed and integrated with the turbine flow model to examine the effects of the aerodynamic
forces on the structural stability of the rotor system. The scope of this paper is limited to the
effects of the Alford force, and analytical/numerical methods have been chosen as methods for
investigation.
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2. Model description

2.1. Fluid model

The fluid model is an analytical actuator disc model which has been described in Refs. [4,5].
Therefore, only a brief summary is given here. The model assumes incompressible, inviscid flow
and analyzes flow redistribution in a single-stage unshrouded axial turbine with a whirling rotor.
The incompressible flow assumption limits the present model to low speed (i.e., low Mach
number) flows. The inviscid flow assumption is reasonable because viscous effects are much
smaller than inertia effects in high Reynolds number flows. The model can predict the stiffness
and damping effects of aerodynamic forces. For the case of an eccentric rotor without whirling,
the predicted aerodynamic forces matched experimental data to within 25% [5].
The actuator disc model actually consists of two coupled two-dimensional models. The

meridional plane model (Fig. 1) is a blade scale analysis which examines the radial flow
redistribution of flow caused by a finite axisymmetric rotor tip gap. This model can predict the
amount and the underturning of the tip leakage flow and the interaction of the tip clearance flow
with the passage flow. Thus, the radially uniform upstream flow splits into a stream associated the
turbine passage (marked by ‘‘�’’) and another associated with the tip clearance (marked by ‘‘+’’).
The results of this analysis are then used as connecting conditions for the radial plane model.
The radial plane model (i.e., radius scale analysis, Fig. 2) examines the azimuthal flow

redistribution caused by non-axisymmetric rotor tip clearance. The blade scale results are used as

Fig. 2. Radius scale flow model.

Fig. 1. Blade scale flow model.
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the zeroth order solution (i.e., concentric case), and a small perturbation approach is used to
examine the eccentric (i.e., non-axisymmetric) case via harmonic analysis. Thus, the perturbations
in the tip leakage flow mass fraction, axial and tangential velocities, and pressure are calculated as
follows:
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The aerodynamic forces acting on the rotor structure in directions normal and tangent to the
instantaneous offset are then determined from the non-axisymmetric pressure and velocity
distributions. The aerodynamics forces are given as
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2.2. Structure model

To develop a structural model of a rotor system, the test rotor system has to be selected first.
The test rotor system is shown in Fig. 3. The test rotor system consists of a disc connected to a
shaft supported at both ends by bearings. The bearings exert stiffness and damping forces on the
shaft, and the disc is equidistant from both bearings. Euler–Bernoulli beam model is used to
describe slender shaft. The parametric values of the test rotor system are taken from Childs [1] and
are listed in Table 1. Fig. 4 shows the test rotor system with the shaft in its first bending mode. The
disc is assumed to be rigid and symmetric (IDx ¼ IDy). It is also assumed the angle YX and YY are

Fig. 3. Test rotor system.
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small and the angular velocity is constant ( ’c ¼ O). The dynamics and finite element approach of
the single disc rotor system are well known and given as follows [7].
For the disc

MD .qd þ CD ’qd ¼ 0: ð4Þ

For the shaft

ðMC þ MSÞ .q þ CS ’q þ KSq ¼ Fext; ð5Þ

Table 1

Test rotor system parameters

Density of axis r ¼ 7750Kg/m3

Stiffness of axis E ¼ 2:036	 1012 N/m
Radius of axis Rs ¼ 0:028m
Radius of disc Rd ¼ 0:14m
Thickness of disc Td ¼ 0:024m
Stiffness of bearing KB ¼ 6:1	 108 N/m

Fig. 4. Schematic of a whirling rotor.
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MD and CD respectively, represent the classical mass and gyroscopic matrices of the disc. md and
IDx are the mass and moment of inertia of the disc, respectively. M is the classical mass matrix of
the shaft. Ms and Cs show the influence of rotatory inertia and gyroscopic effect of the shaft,
respectively. R is the mass per unit volume, S is the cross-sectional area of the shaft and I is the
area moment of inertia of the shaft cross-section about the neutral axis. E is the elastic modulus of
the shaft and L is the length of the element. After global assemblage, the dynamics of the disc
should be added as the structural unknowns of the center as follows:
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2.3. Fluid–structure model

After the global assemblage and incorporation of forces from the bearings and the Alford force,
the governing equation takes the form of

½M� f .qg þ ½C� f ’qg þ ½K�fqg ¼ ~FF spring þ ~FF damping þ ~FF A:F : ð8Þ

Here the bearings’ damping and stiffness forces are given as

~FF springnþ1 ¼ �kunþ1~ii � kvnþ1~jj ; ~FF damping1 ¼ �c ’unþ1~ii � c’vnþ1~jj ð9Þ

at node n þ 1:
The Alford force takes the following form:

fFA:Fn=2þ1g ¼ �
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After assembling Alford force and bearing force, the governing equation is expressed as follows:

½M�f .qg þ ½C þ CB þ CA:F �f ’qg þ ½K þ KB þ KA:F �fqg ¼ 0; ð11Þ
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where CB and CAF are the damping matrices of the bearing and Alford force, respectively. Also
KB and KAF are the stiffness matrices of the bearing and Alford force, respectively.

3. Model predictions

The turbine fluid model has been run for a test turbine whose parameters are as shown in
Table 2. These are typical of modern high-performance turbines. Since the rotordynamic
instability often manifests itself as a subsynchronous whirl, frequencies up to the synchronous
frequency in both forward and backward directions have been examined. The aerodynamic forces
normal and tangent to the instantaneous rotor offset predicted by the fluid model are shown in
Figs. 5 and 6. One can then curve fit the data to extract aerodynamic damping and stiffness factors
from

Fn ¼ A1ðOezÞ þ A0ez; Ft ¼ B1ðOezÞ þ B0ez; ð12Þ
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The damping and stiffness factors and their dimensions thus determined are listed in Table 3.
These factors are then incorporated into Eq. (13). The aerodynamic force data need to be in
dimensional form because of the difference in normalization between the fluid model and the
structure model.
Next, an eigenvalue analysis can be carried out to determine the stability of the rotor system,

and the equations of motion for the rotor system can be solved via time marching method to
examine the rotor system’s transient behavior. To begin the calculation, a rotor offset equivalent
to 1% of the annulus height, is given as the initial condition.
Figs. 7–9 illustrate x and y displacements versus time, whirling trajectory, and eigenvalues for

the test rotor system. In this case, the shaft is twice as long as the disc diameter, and external
damping is non-existent. Figs. 7 and 8 show clearly that the whirl amplitude increases with time,
and this instability is shown in Fig. 9 which shows poles with positive real values.
By introducing external damping, in this case at the bearings, the rotor system can be stabilized.

Figs. 10–12 show the rotor system behavior at the neutral stability point with the whirl amplitude
approaching a steady state value, and the poles located on the imaginary axis. The amount of
external damping required is 3050Ns/m. Increasing damping beyond this point moves the poles
further to left so that whirling is damped out. Thus, the stability boundary for a particular rotor
system can be determined.

Table 2

Test turbine parameters

R C %t=H e=H

0.2 1.5 2% 1%
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Fig. 5. Aerodynamic force normal to the offset versus whirling frequency.

Fig. 6. Aerodynamic force tangent to the offset versus whirling frequency.

Table 3

Aerodynamic damping and stiffness coefficients

A1 (Ns/m) A0 (N/m) B1 (Ns/m) B0 (N/m)

f ¼ 0:5 163.1 �4 628 900 �997 4 762 800
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Fig. 7. Displacements versus time without external damping (L=D ¼ 2:0).
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Fig. 8. Whirling orbit versus time.
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Fig. 9. Root locus plot for the test rotor system without external damping.
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Fig. 10. Displacement vs: time with external damping of 3050Ns/m (L=D ¼ 2:0).
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Fig. 11. Whirling orbit versus time.
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Fig. 12. Root locus plot for the test rotor system with external damping of 3050Ns/m.
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Using this approach, the effects of flow and geometric parameters have been examined.
Specifically, the amount of external damping required for neutral stability for various turbine
operating points and shaft lengths has been determined. Fig. 13 shows the required external
damping plotted versus the flow coefficient for various shaft lengths. The required external
damping is not sensitive to the flow coefficient. Since the stiffness of the shaft is changed according
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Fig. 13. External damping required for neutral stability versus flow coefficient.
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to the length of the shaft, the change of the stiffness is examined using the variation of the shaft
length. A plot of the required external damping versus the stiffness of the shaft (for various flow
coefficients) is shown in Fig. 14. The required external damping increases rapidly as the stiffness
of the shaft decreases. Increasing shaft length reduces the rotor shaft’s lateral stiffness. Therefore,
more external damping is required for stabilization. Fig. 15 shows stability boundary of the rotor
system according to the variation of the flow coefficient and stiffness of the shaft. The stable single
rotor system can be designed using this stability boundary.

4. Conclusions

For the first time, an analytical/numerical stability analysis of a rotor system with Alford effects
has been carried out. The Alford force refers to destabilizing lateral aerodynamic forces caused by
non-axisymmetric turbine tip clearance. For aerodynamic forces, an actuator disc model,
previously developed by Song and Martinez-Sanchez [4,5] was used. In addition, a six-degree-of-
freedom model of a rotor system supported at both ends by bearings has been developed. The
fluid and structure models were then combined to conduct a fluid–structure interaction analysis. A

Fig. 15. Stability boundary for varying flow coefficient and the shaft length values.
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classical Euler–Bernoulli beam finite element with support springs and dampers has been
employed for structural modeling. The results show that the Alford force can indeed cause
structural instability and that external damping can stabilize such a rotor system. Furthermore,
the amount of required damping is relatively insensitive to the turbine operating point but
increases rapidly as the length of the rotor shaft increases.

Appendix A. Nomenclature

C absolute velocity
e eccentricity
f tangential force acting on the turbine
F force vector
H turbine annulus height
I area moment of inertia
L element length
K stiffness matrix
M mass matrix
p pressure
q the strength of vorticity at the interface between tip and passage steams
S cross�sectional area of the shaft
t tip clearance
U turbine rotational speed

Greek letters

b relative flow angle
D the thickness of the underturned layer
f turbine flow coefficient
l the amount of clearance flow
r mass density
O angular velocity
Y rotational angle

Superscripts

: time derivative
‘ perturbation

mean value
4 complex amplitude
+ related to the tip clearance stream
� related to the passage stream

Subscripts
d disc
s shaft
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x axial direction
y tangential direction
z radial direction
0 far upstream of turibne
1 turbine stator inlet
2 turbine rotor inlet
3 turbine rotor exit
4 far downstream of turbine rotor
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